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Ablating wires

Introduction

0

2

0

4 R

I

dt

dm
Vabl

π

µ
−=

abl

• Mass ablation rate described by Rocket model 
(S.Ledebev, Phys Plasmas, 8, p3734, (2001)) 16mm

• Mass ablated determined by Imax

• Timescale determined by τ
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MAGPIE Imperial College       1MA (2MA)       250ns

GenASIS UCSD 0.25 MA 150ns

X-Pinch Driver       UCSD 0.08 MA 50ns

Time-slice from 3D Resistive MHD Gorgon Code 

(J.Chittenden, Plasma Phys Control Fusion 46, B457 (2004)



Supersonic Plasma Flow

• Plasma density (Nion):  1x1014 - 5x1017cm-3

• Plasma Velocity: 1.5x105 ms-1

• Te = 5-15 eV

• Mach number: 3-5

• Rm < 1  (experimental)

Supersonic precursor 

plasma flow
Flow Parameters

Collisionality

16mm
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Collisionality

MAGPIE  

Al : typically <1mm

W : >8mm for ~140ns

UCSD:

Some collisionless flow 

even for Al

133ns 171nsWAl

16mm

Gated axial XUV self-emission images from 16 wire 

arrays on MAGPIE

Time-slice from 3D Resistive MHD Gorgon Code 

(J.Chittenden, Plasma Phys Control Fusion 46, B457 (2004)



Shock formation in supersonic plasma flow

Collisional systems:

• e.g. Nested Wire Arrays at >1MA
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Shock formation in supersonic plasma flow

Collisional systems:

• e.g. Nested Wire Arrays at >1MA

• Data from 32 outer and 16 inner Al wires 

on MAGPIE

• Bow shocks formed around inner wires

• Secondary shocking also observed

• D.J.Ampleford at HEDLA

Outer array
position

Outer array wires

Plasma flow
from outer array

Axial gated XUV self-emission imaging of nested Al arrays on MAGPIE 

(D.J.Ampleford in prep. PRL)



Shock formation in supersonic plasma flow

Collisional systems:

• e.g. Nested Wire Arrays at >1MA

• Data from 32 outer and 16 inner Al wires 

on MAGPIE

• Bow shocks formed around inner wires

• Secondary shocking also observed

• D.J.Ampleford at HEDLA

Outer array
position

Outer array wires

Plasma flow
from outer array

Collisionless systems:

• UCSD experiments will provide 

collisionless flow, 

• E.g. Laser driven experiments by Bell et 

al Phys Rev A, 38, p1363 (1998)

• Good diagnostic access and shot rate

Axial gated XUV self-emission imaging of nested Al arrays on MAGPIE 

(D.J.Ampleford in prep. PRL)
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Precursor Column parameters

• Nion : 1018-1022 cm-3 (0.1 – 1 kg/m3)

• Z: (Al) ~7, (W) ~ 14

• Te ~ 60eV – 100 eV

• Diameter: 0.5-3 mm

Dense precursor 

condensation on 

axis
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Inertially Confined plasma column formed

Array
Axis

Axial (lineouts right) and radial gated XUV self-emission images, along with column density 

with time for MAGPIE and COBRA W experiments (Bott et al, Phys Rev E, 74 046403 (2006))

Radiatively cooled and steady state (several shock transit times)
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Typical Parameters scale well 

to astrophysical jets

Hydrodynamic Jet formation

General flow variables

Length (cm) 2

Width (cm) 0.1

Dynamical time Scale 100ns

Electron temperature (eV) 10

Jet tip velocity (km/s) ~200�Jet density,  (g/cm3) 10−4

Validity of fluid description

Localisation parameter 10−4

Reynolds Number (Re) 105 − 108

Peclet number (Pe) 2 − 2 × 103

Jet scaling

Mach number, M > 20

Density Contrast,  100/ ~ 1

Conical

Wire

Array

2mm
Density Contrast,  100/ ~ 1

 Cooling Parameter,  1

S.Lebedev et al, ApJ 564, p113 (2002)

S.Lebedev et al, ApJ, 616, p988 (2004)

Gated XUV Emission Laser Shadowgram

Internal shock structure during deflection

D.J.Ampleford,  Astro & Space Sci , 307, p29 (2007)

Ciardi et al, ApJ (accepted)

A.Frank, Astro. Space Sci , 298, p107 (2005)

100 years 300 years
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Bally & Reipurth. ApJ, 

546, p299 (2001)

HH502



Variation of jet parameters: Jets at UCSD
• Range of jet parameters possible using different currents (e.g. 2 Generators at UCSD & 

MAGPIE)

• First free propagating jets from x-pinches recently measured at UCSD at 80 kA

166 ns
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Parameter 80 kA X-pinch measured 250 kA Conical Expected (HEDLA)
Vjet 3.3 x 104 ms-1 1 x 105 ms-1 (100 km/s)
cs (radial exp)  5.5 x 103 ms-1

M 4-8 M > 10

ρe (cm-3 ) few x 1017 ~ 1018 - 1019

T  (eV) ~15 ~15 
Z ~5 ~ 5     

D.M.Haas at APS 2007, and in prep. APL
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Magnetically Driven Jets

Radial Wire Arrays
• Wires show magnetic bubble structure and 

jet formation (Lebedev AIP Conf. 2006)

• Foils loads show repeat formation of this 

structure during one current pulse

• Recently foils performed with and without 

a gas fill (see F.Suzuki-Vidal at upcoming 

HEDLA conference)

Ciardi et al, Phys. Plasmas 14, 056501 2007



Magnetically Driven Jets

6 µm 
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Radial Wire Arrays
• Wires show magnetic bubble structure and 

jet formation

• Foils loads show repeat formation of this 

structure during one current pulse

• Recently foils performed with and without 

a gas fill (see F.Suzuki-Vidal at upcoming 

HEDLA conference)
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Magnetically Driven Jets

Radial Wire Arrays
• Wires show magnetic bubble structure and 

jet formation

• Foils loads show repeat formation of this 

structure during one current pulse

• Recently foils performed with and without 

a gas fill (see F.Suzuki-Vidal at upcoming 
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Future Studies at UCSD 

UCSD Drivers

• Good diagnostic access, high shot rate

• 2 generators to give plasma source, and independent 

B-field or second plasma

Parameter space accessible

Can adjust Plasma ρ : nion ~1014 – 1017 cm-3

B-field: Variable up to ~50T (200 kA)

Difficult to adjust: Plasma velocity (ablation physics)
Jet propagation into B-field

Jet

AnodeCathode

GenASIS

250 kA
LTD

X-Pinch
80 kA

Marx

1
0
 m

m

10 mm

Single metal wire

20 - 40 mm

Difficult to adjust: Plasma velocity (ablation physics)

T: 10eV in flow, 60-100 eV in column

Material At No. below 6(C) (typ. 13, Al)

Physical Conditions: Collisionality of flow

Magnetization of ions

Low T limits plasma to low β
Need to investigate application to 

cosmic shocks (Drake PoP 2000) 

Modelling

• GORGON for hydro and magnetic jets (J. Chittenden & 

A.Ciardi) 

• Also use of LSP, h2d, and ePlas at UCSD

Jet propagation into B-field

Kinetic compression of exploding foil

Ireturn Iwire

P  = vflow ρ
2

Single metal wire
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Imperial College / UCSD Collaborative Studies

Imperial College: High current drive, extensive diagnostics, experienced team

UCSD: 2 drivers, high shot rate in simplified set-ups

Precursor 
Column

JxB force ANODE

Compression of targets using ablated 

plasma flow

Pressures: 1 – 100 kbar

AXIS

Iarray

Bglobal

Ablated plasma
flow

WIRES

P  = vflow ρ 2

CATHODE



Imperial College / UCSD Collaborative Studies

Imperial College: High current drive, extensive diagnostics, experienced team

UCSD: 2 drivers, high shot rate in simplified set-ups

I

JxB force ANODE

Bz

Iφ

Compression of targets using ablated 

plasma flow

Pressures: 1 – 100 kbar

Iarray

Bglobal

Ablated plasma
flow

WIRES

P  = vflow ρ 2

CATHODE

Magnetic field in precursor column

Twisted Arrays



Imperial College / UCSD Collaborative Studies

Imperial College: High current drive, extensive diagnostics, experienced team

UCSD: 2 drivers, high shot rate in simplified set-ups

I

JxB force ANODE

Current Drive

Compression of targets using ablated 

plasma flow

Pressures: 1 – 100 kbar

Iarray

Bglobal

Ablated plasma
flow

WIRES

P  = vflow ρ 2

CATHODE

Current Drive
Marx  or

inductive split Magnetic field in precursor column

Twisted Arrays

Inductive split from main 

current

Additional generator



Imperial College / UCSD Collaborative Studies

Imperial College: High current drive, extensive diagnostics, experienced team

UCSD: 2 drivers, high shot rate in simplified set-ups

Thin-Walled
Metal tube

JxB force ANODE

Bz Compression of targets using ablated 

plasma flow

Pressures: 1 – 100 kbar

Iarray

Bglobal

Ablated plasma

flow

WIRES

P  = vflow ρ
2

CATHODE

Magnetic field in precursor column

Twisted Arrays

Inductive split from main 

current

Additional generator

B-field flux compression



Imperial College / UCSD Collaborative Studies

Imperial College: High current drive, extensive diagnostics, experienced team

UCSD: 2 drivers, high shot rate in simplified set-ups

Iarray

Ablated  plasma
flow

Precursor 
Column

P  = vρ 2

JxB force Jet Interaction Experiments

Use of radial / conical arrays for 

interaction with

Bglobal

P  = v
flow

ρ 2

Jet

 

interaction with

Precursor plasma column

Magnetised precursor

Counter-propagating jet



Jets and outflows from pulsed power driven plasmas

Well characterised……

• Generation and deflection of hydrodynamic jets

• Generation of magnetically driven jets

Systems developing…..

•Multi-stage magnetically driven jets•Multi-stage magnetically driven jets

•Low jet/ambient medium density ratio experiments

•Hydro Jet work at UCSD

•Jets with angular momentum (Ampleford, PRL 100, p035001, 2008)

To come……

•Compression of magnetised plasmas

•Propagation of plasma into B-field / magnetised targets

•Collisionless shock systems


